13 research outputs found

    From Vascular Smooth Muscle Cells to Folliculogenesis: What About Vasorin?

    Get PDF
    First described in 1988, vasorin (VASN) is a transmembrane glycoprotein expressed during early mouse development, and with a less extent, in various organs and tissues (e.g., kidney, aorta, and brain) postnatally. Vasn KO mice die after 3 weeks of life from unknown cause(s). No human disease has been associated with variants of this gene so far, but VASN seems to be a potential biomarker for nephropathies and tumorigenesis. Its interactions with the TGF-β and Notch1 pathways offer the most serious assumptions regarding VASN functions. In this review, we will describe current knowledge about this glycoprotein and discuss its implication in various organ pathophysiology

    Tissue Engineering Strategies to Promote Bone Repair

    No full text

    Oxidative Stress Is Related to the Deleterious Effects of Heme Oxygenase-1 in an In Vivo Neuroinflammatory Rat Model

    Get PDF
    Heme oxygenase-1 (HO-1) induction is associated with beneficial or deleterious effects depending on the experimental conditions adopted and the neurodegenerative rodent models used. The present study aimed first to evaluate the effects of cerebral HO-1 induction in an in vivo rat model of neuroinflammation by intrastriatal injection of quinolinic acid (QA) and secondly to explore the role played by reactive oxygen species (ROS) and free iron (Fe2+) derived from heme catabolism promoted by HO-1. Chronic I.P. treatment with the HO-1 inductor and substrate hemin was responsible for a significant dose-related increase of cerebral HO-1 production. Brain tissue loss, microglial activation, and neuronal death were significantly higher in rats receiving QA plus hemin (H-QA) versus QA and controls. Significant increase of ROS production in H-QA rat brain was inhibited by the specific HO-1 inhibitor ZnPP which supports the idea that ROS level augmentation in hemin-treated animals is a direct consequence of HO-1 induction. The cerebral tissue loss and ROS level in hemin-treated rats receiving the iron chelator deferoxamine were significantly decreased, demonstrating the involvement of Fe2+in brain ROS production. Therefore, the deleterious effects of HO-1 expression in this in vivo neuroinflammatory model were linked to a hyperproduction of ROS, itself promoted by free iron liberation

    Optimized Bioactive Glass: the Quest for the Bony Graft

    No full text
    International audienceTechnological advances have provided surgeons with a wide range of biomaterials. Yet improvements are still to be made, especially for large bone defect treatment. Biomaterial scaffolds represent a promising alternative to autologous bone grafts but in spite of the numerous studies carried out on this subject, no biomaterial scaffold is yet completely satisfying. Bioactive glass (BAG) presents many qualifying characteristics but they are brittle and their combination with a plastic polymer appears essential to overcome this drawback. Recent advances have allowed the synthesis of organic-inorganic hybrid scaffolds combining the osteogenic properties of BAG and the plastic characteristics of polymers. Such biomaterials can now be obtained at room temperature allowing organic doping of the glass/polymer network for a homogeneous delivery of the doping agent. Despite these new avenues, further studies are required to highlight the biological properties of these materials and particularly their behavior once implanted in vivo. This review focuses on BAG with a particular interest in their combination with polymers to form organic-inorganic hybrids for the design of innovative graft strategies

    Phosphorylated and Non-phosphorylated Leucine Rich Amelogenin Peptide Differentially Affect Ameloblast Mineralization

    No full text
    The Leucine Rich Amelogenin Peptide (LRAP) is a product of alternative splicing of the amelogenin gene. As full length amelogenin, LRAP has been shown, in precipitation experiments, to regulate hydroxyapatite (HAP) crystal formation depending on its phosphorylation status. However, very few studies have questioned the impact of its phosphorylation status on enamel mineralization in biological models. Therefore, we have analyzed the effect of phosphorylated (+P) or non-phosphorylated (−P) LRAP on enamel formation in ameloblast-like cell lines and ex vivo cultures of murine postnatal day 1 molar germs. To this end, the mineral formed was analyzed by micro-computed tomography, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy, Selected Area Electon Diffraction imaging. Amelogenin gene transcription was evaluated by qPCR analysis. Our data show that, in both cells and germ cultures, LRAP is able to induce an up-regulation of amelogenin transcription independently of its phosphorylation status. Mineral formation is promoted by LRAP(+P) in all models, while LRAP(–P) essentially affects HAP crystal formation through an increase in crystal length and organization in ameloblast-like cells. Altogether, these data suggest a differential effect of LRAP depending on its phosphorylation status and on the ameloblast stage at the time of treatment. Therefore, LRAP isoforms can be envisioned as potential candidates for treatment of enamel lesions or defects and their action should be further evaluated in pathological models
    corecore